Lagrangian and Moving Mesh Methods for the Convection Diffusion Equation

نویسندگان

  • KONSTANTINOS CHRYSAFINOS
  • NOEL J. WALKINGTON
چکیده

Abstract. We propose and analyze a semi Lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [7, 8] and the dependence of various constants upon the diffusion parameter is characterized. Error estimates independent of the diffusion constant are obtained when the velocity field is computed exactly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

An Optimal-order Error Estimate to the Modified Method of Characteristics for a Degenerate Convection-diffusion Equation

Time-dependent advection-diffusion equations arise in mathematical models of porous medium flow and transport processes, including petroleum reservoir simulation, environmental modeling, and other applications. In such applications as immiscible displacement of oil by water in a secondary oil recovery process in petroleum industry or a groundwater transport process involving a non-aqueous phase...

متن کامل

Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework

In this paper we analyze a stabilized finite element method to approximate the convection-diffusion equation on moving domains using an arbitrary Lagrangian Eulerian (ALE) framework. As basic numerical strategy, we discretize the equation in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using a stabilized finite element method (the orthogona...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Mesh Movement Governed by Entropy Production

The aim of this paper is to study the feasibility of using (irreversible) entropy production as driving force for a moving mesh. Such a method should be able to capture or track physical phenomena such as viscous and thermal boundary layers, shock waves and regions with chemical reactions. A brief outline is given for the FEM-ALE approach, which forms the basis of the moving mesh method. Mesh v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008